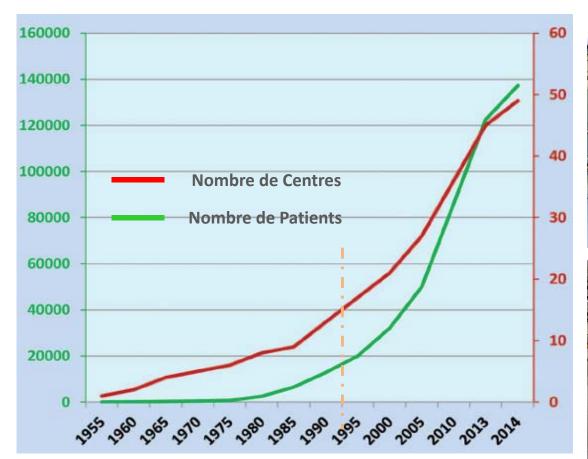
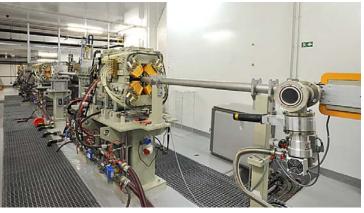


SOMMAIRE

- La protonthérapie dans le monde
- Intérêt des protons
- Indications cliniques
- Présentation du CPO
- Prise en charge du patient
- La radioprotection du site
- Démarche qualité
- Perspectives

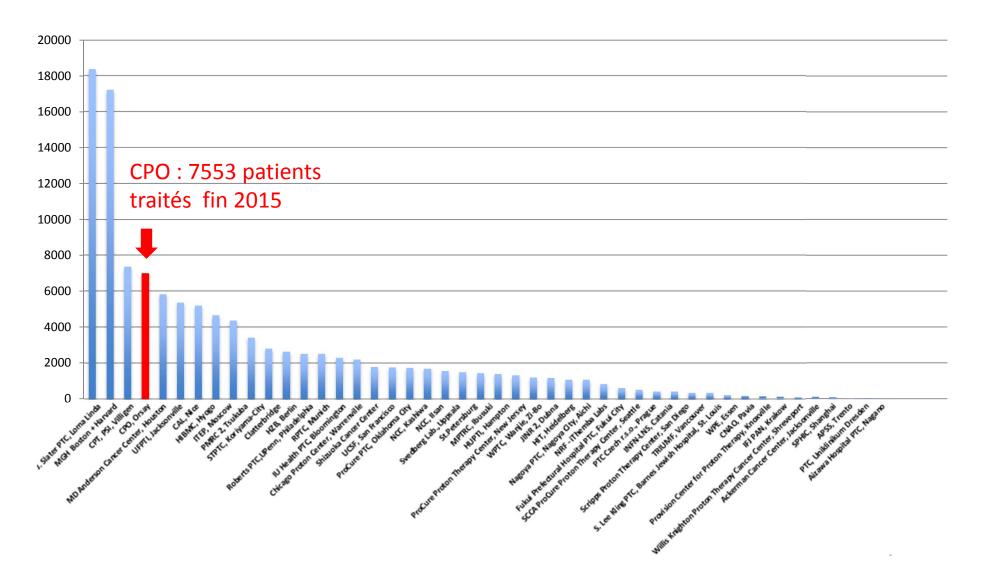



Parc mondial des installations



118 200 PATIENTS TRAITES PAR **PROTONS FIN 2014**

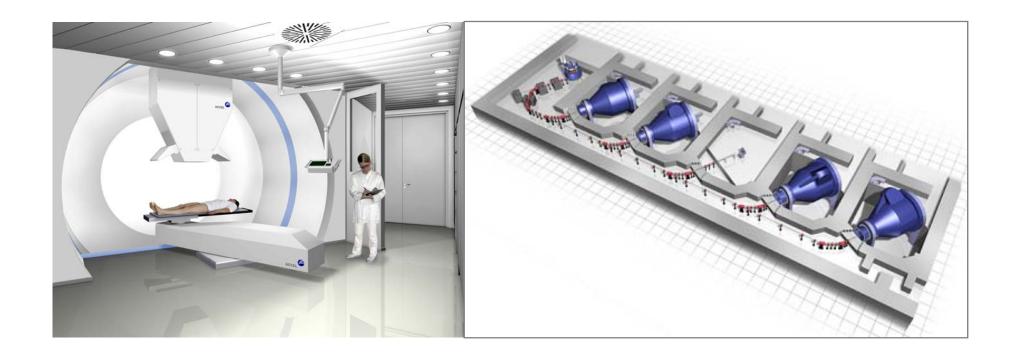
Sites	Opérationnels	En cours d'installation	En projet	Total
Monde hors	34	25	9	68
Europe		25	3	
Canada	1			1
Etats-Unis	17	14	3	34
Argentine			1	1
Russie	3	1	1	5
Japon	9	3	1	13
Chine	2	1	1	4
Corée du Sud	1	2		3
Taiwan		2	1	3
Inde		1	1	2
Afrique du Sud	1			1
Arabie Saoudite		1		1
Europe hors	13	-	7	25
France	13	5	1	25
Allemagne	5			5
Autriche		1		1
Danemark			1	1
Grande-Bretagne	1		2	3
Hollande		2	2	4
Italie	3			3
Pologne	1	1		2
République	4			4
tchèque	1			1
Slovaquie			1	1
Slovénie		1		1
Suède	1			1
Suisse	1		1	2
France	2		1	3
IC-Orsay	1			1
CAL-Nice	1			1
CFB-Caen			1	1
Total général	49	30	17	96



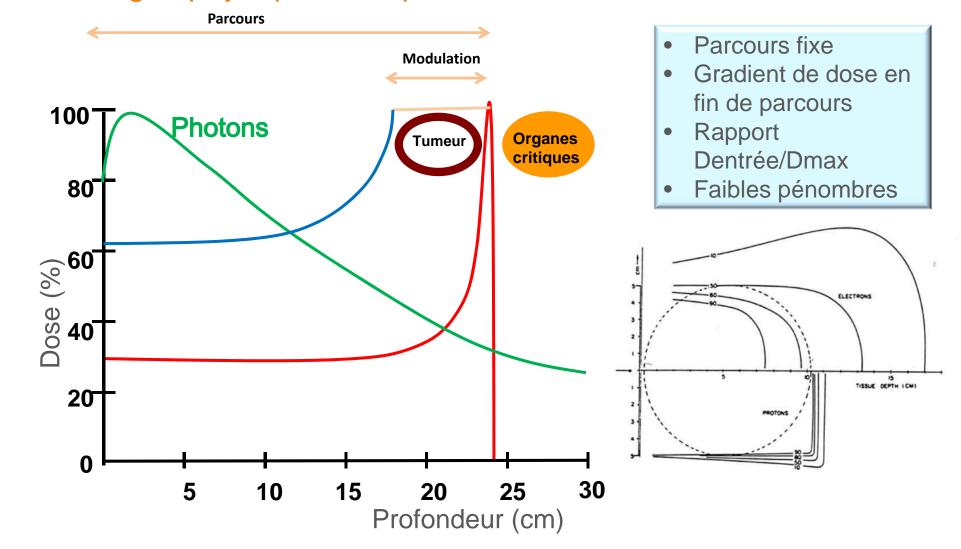
Evolution du nombre de centres de protonthérapie

Jermann (2015), Int J Particle Therapy

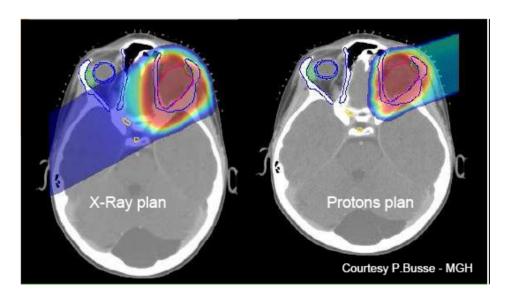
Nombre de patients traités par site

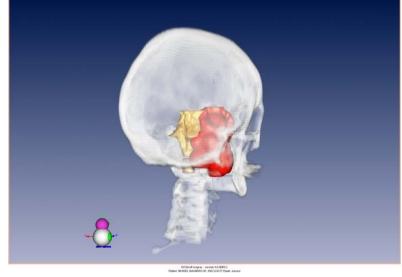

La protonthérapie au niveau national

Juin 1991: premier traitement à Nice/ Cyclotron Septembre 1991: premier traitement à Orsay / Synchrocyclotron IN2P3


2010: premier traitement avec cyclotron PROTEUS PLUS IBA 230 MeV 2016: premier traitement prévu avec cyclotron PROTEUS ONE IBA

Centre de protonthérapie type



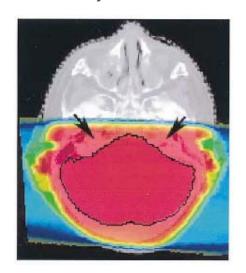

- 2 à 3 bras isocentriques
- 1 ligne fixe ophtalmologique
- 1 ligne expérimentale

Avantages physiques des protons

Avantages physiques de la protonthérapie

Parcours fixe:

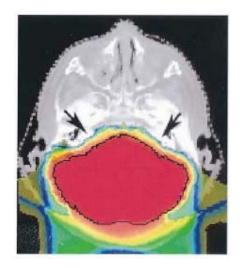
Protection des OAR situés derrière le volume cible


Faibles pénombres latérales et distale:

Protection des OAR adjacents au volume cible

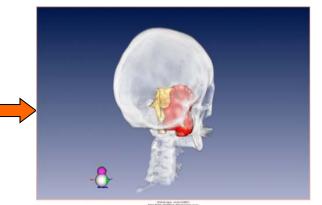
- Meilleure précision de l'irradiation et épargne des organes sains
 - Réduction des faibles doses en dehors du volume cible

Bénéfice thérapeutique de la protonthérapie


- Moindre toxicité à dose égale
- Possibilité d'escalade de dose à toxicité égale, dans les tumeurs « radio-résistantes »
- Réduction du risque de cancer radio-induit chez les enfants et les jeunes adultes

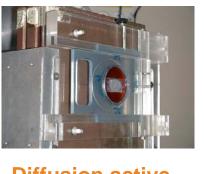
Radiothérapie Conventionnelle

IMRT



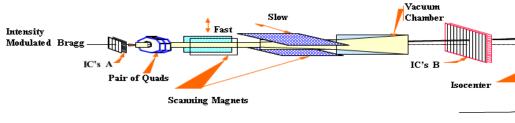
Protonthérapie

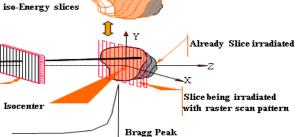
Mise en forme du faisceau



- Energie fixe
- Dépôt d'énergie sur quelques mm en profondeur

Diffusion passive





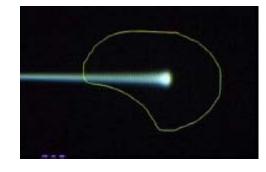
Diffusion active

Courtesy of IBA

Mise en forme du faisceau/ Diffusion passive

Mise en forme du faisceau/ Diffusion passive

Avantages inconvénients des deux méthodes


Diffusion passive:

Diffusion active:

- Robuste
- Insensible aux mouvements d'organes
- Pas d'activation
- Pas de manutention
- Pas de changement de snout
- Optimisation de la distribution de dose dans la zone proximale

- Manutention
- Production de neutrons
- Gestion des accessoires
- Sensible aux mouvements d'organes
- Moins bonne pénombre latérale
- CQ faisceau plus complexe

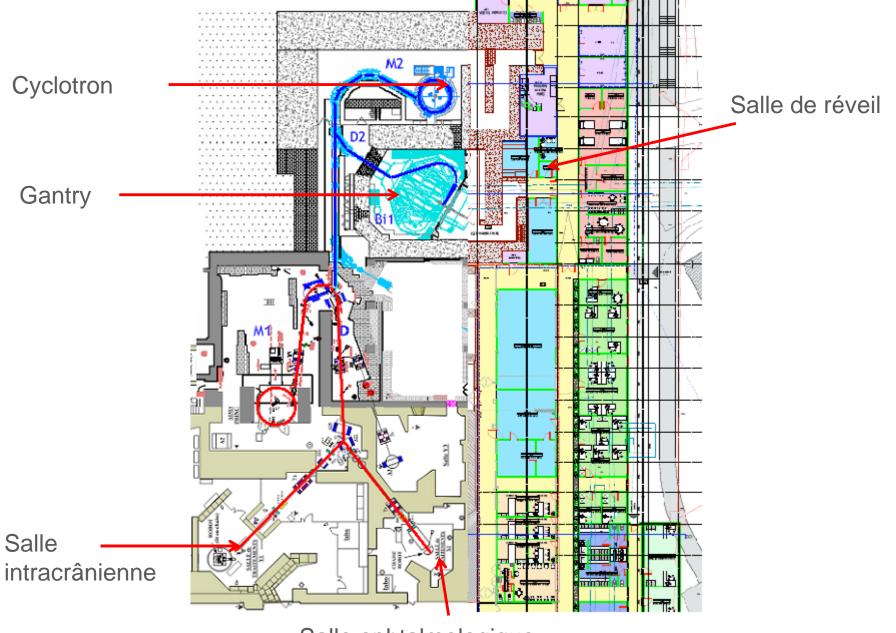
Indications cliniques de la protonthérapie

- Mélanomes de la choroïde et tumeurs ophtalmiques
- Tumeurs de la base de crâne (chondrosarcome, chordome, ...)
- Tumeurs du rachis et du sacrum
- Pédiatrie

Tumeurs à proximité immédiate d'OAR Importance +++ de la mise en place quotidienne

- Choix de contentions adaptées
- Systèmes de positionnement robotisés
- Contrôles RX quotidiens
- Grande précision dans la MEP

Systèmes de positionnement/ Robots 6 degrés de liberté

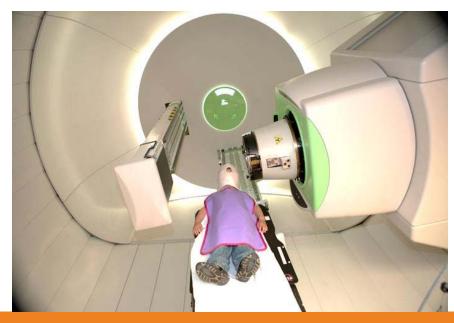

Salle Y1

Salle Y2

Salle GANTRY

Le centre de protonthérapie de l'Institut Curie

- Un cyclotron de 230 MeV IBA
- 3 salles de traitement (2 lignes fixes/ 1 bras isocentrique)
- Intégré au département de radiothérapie de l'Institut Curie
- Une équipe de 50 personnes dont 13 techniciens et ingénieurs pour assurer la maintenance de l'accélérateur et du bâtiment, la maintenance et le développement des lignes de faisceau.
- Une équipe d'anesthésistes du site IC Paris pour la prise en charge des enfants sous AG


Salle ophtalmologique

CPO: Les locaux

Prise en charge du patient au CPO

Traitements ophtalmologiques: Mélanomes de la choroïde/ Iris/Conjonctive & hémangiomes 5750 patients traités fin 2016

- Recrutement national
- Forte dose/fort débit de dose/Etalement sur 4 ou 8 séances
- Petit volume/ Précision de positionnement de 3/10 mm/Densité homogène
- Organe mobile/ Patient impliqué dans sa MEP

Autres localisations: tumeurs BDC/ Rachis/Sacrum 1803 patients traités fin 2016

- Recrutement international
- Dose/étalement standard. Possibilité d'inclure une composante photons
- % Pédiatrie important/ traitements sous AG pour enfants<5ans

TRAITEMENTS OPHTALMOLOGIQUES

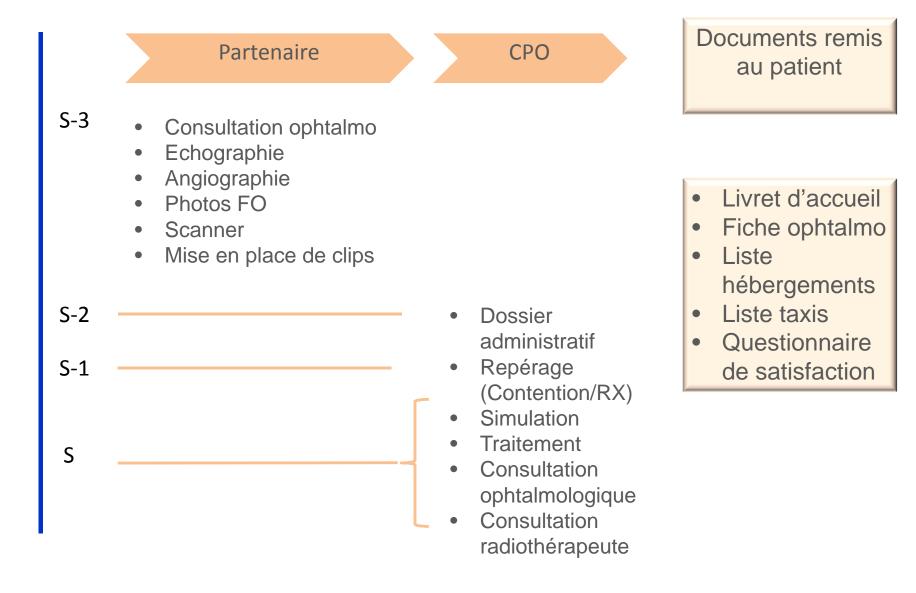
AUTRES LOCALISATIONS

S-7

S-4

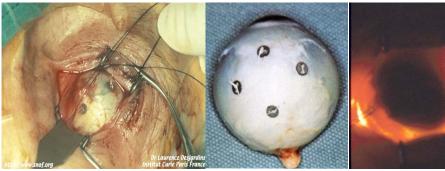
S-4

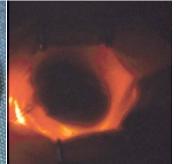
S-4


S-2

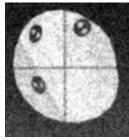
S-1

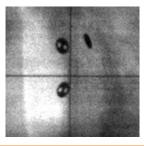
 $J_1 - J_n$


Pré traitement	S-3	Ophtalmologiste	Oncologue radiothérapeute
Implants	S-2	Clips de tantale sauf pour iris et conjonctive	Pas systématique
Contention	S-1	Masque + embout buccal	Dépend de la localisation
Imagerie	S-2	Echographie+ scanner+photos	Scanner + IRM
Dosimétrie	S-1	EYEPLAN/1champ	3 to 6 champs
Simulation	J-1	Tous les patients	Pas systématique
Traitement	J ₁ - J _{4 ou 8}	MEP quotidienne RX	MEP quotidienne RX
Suivi thérapeutique		1 CS ophtalmo et Radiothérapeute	1 CS hebdomadaire


Prise en charge patient ophtalmologique

Traitement ophtalmologique

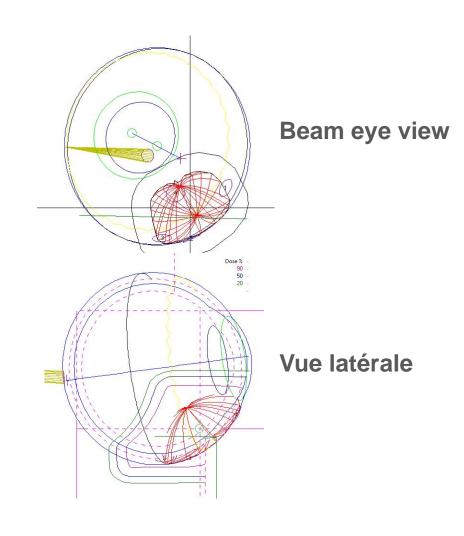

- Clips en tantale suturés autour de la base de la tumeur (AG
 - +Transillumination)
 - Distances clips-tumeur
 - Diamètre du limbe



- Contention:
 - Masque +embout buccal
 - Ecarteurs de paupières
 - Robot (0,1mm, 0,1°)
- Contrôle de la MEP: RX

Traitement ophtalmologique/ Dosimétrie

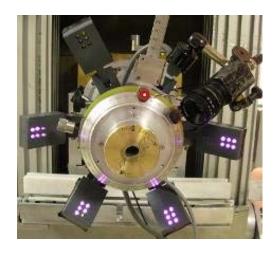
Reconstruction 3D de la tumeur

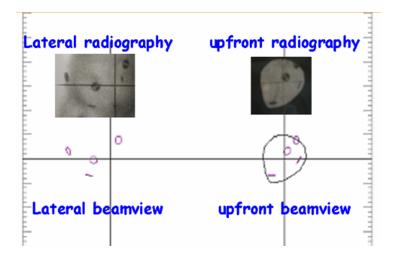

Choix de la position de traitement

Préservation de l'œil:

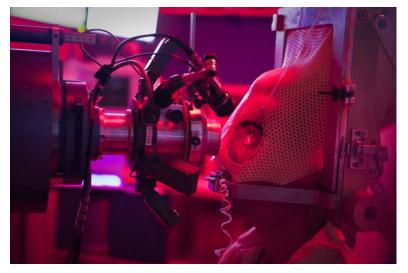
- Eviter d'irradier la totalité de la chambre antérieure
- Réduire le volume d'irradiation
- Eviter la glande lacrymale

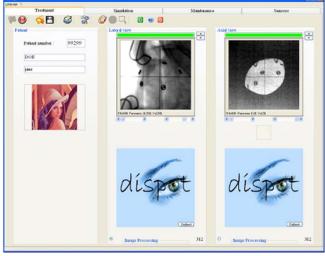
Préservation de l'AV(Si possible)

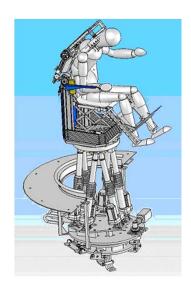

- Eviter le nerf optique
- Eviter la macula


Traitement ophtalmologique/ Simulation

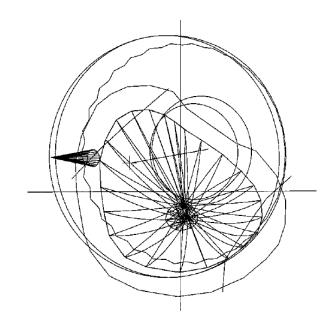
Simulation:

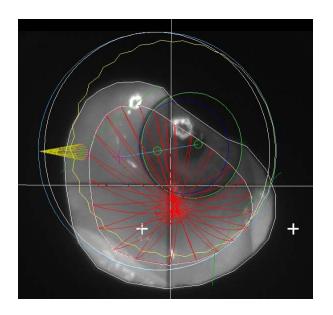

- Validation de la position
- Mesure de la géométrie de l'œil et des paupières





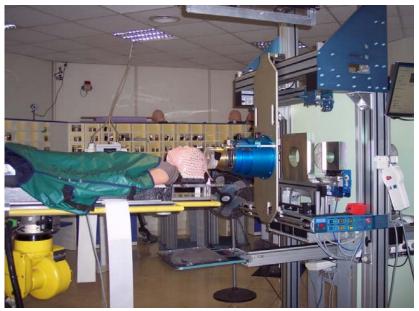
Traitement ophtalmologique/ Traitement


- MEP quotidienne par clichés RX – recalage manuel
- Contrôle du patient et de la position de l'œil par deux caméras spécifiques



Traitement ophtalmologique/ Contrôle de la MEP

- Caméra beam eye view (Visualisation du champ de traitement)
- Caméra externe (Contrôle de la position de l'œil)

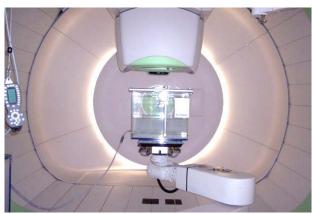


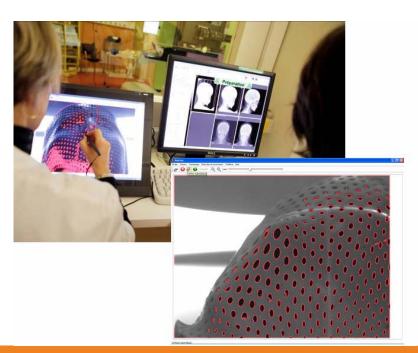
Modélisation œil et volume cible dans le TPS **EYEPLAN**

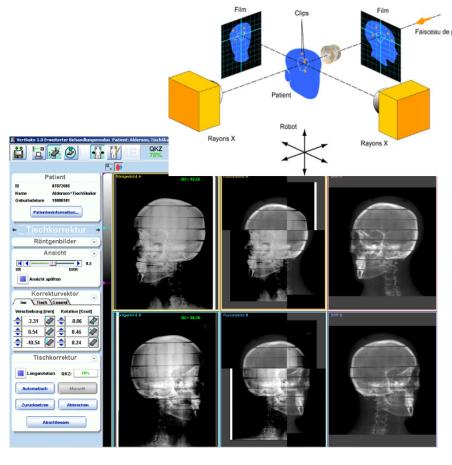
Contrôle MEP par caméra Médusa

Prise en charge patient hors ophtalmologique

Prise en charge patient hors ophtalmologique

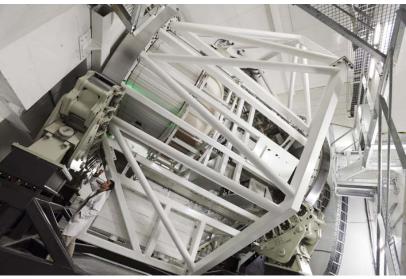

- Scanner
- IRM
- FUSION
- Contourage du volume cible et des OAR (Radiothérapeute)
- Balistique d'irradiation mise en place par dosimétriste ou physicien/ Vérifiée par physicien/Validée par le radiothérapeute
- Simulation (Selon les cas)
- Fabrication des accessoires personnalisés (Collimateur, compensateur)
- CQ patient

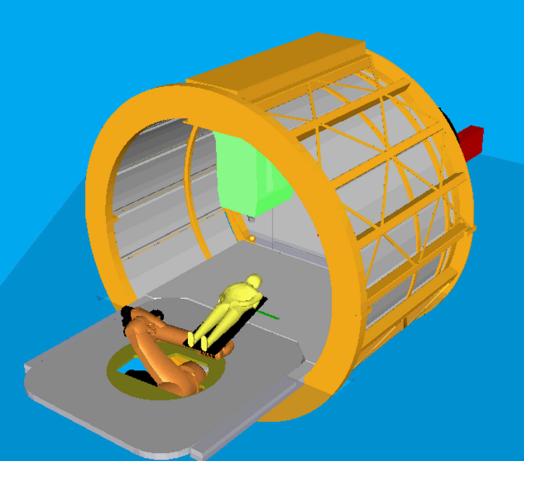




Logiciels de positionnement

- Implants ou structures anatomiques (recalage 6D manuel ou automatique)
- Positionnement par RX orthogonaux quotidiens et itératifs
- Robotique (0,1mm et 0,1°)
- Contrôle patient par caméra spécifique





Prise en charge patient hors ophtalmologique

Prise en charge des enfants sous AG

- Enfants<5 ans
- 2 à 10 enfants sous AG/ jour
- 2 champs/ jour
- Induction et réveil en salle de traitement
- Suivi en salle de réveil puis petit déjeuner

Maintenance

Equipe technique : 15 techniciens et

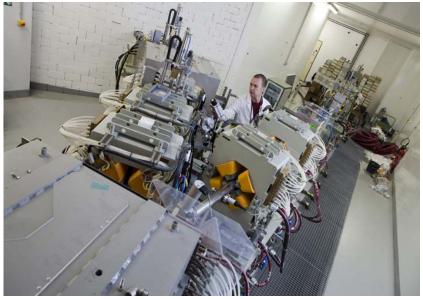
ingénieurs

Equipe IBA: 3 ingénieurs

Astreinte 24/7 (2 TECH+1PHYSICIEN)

Maintenance hebdomadaire:

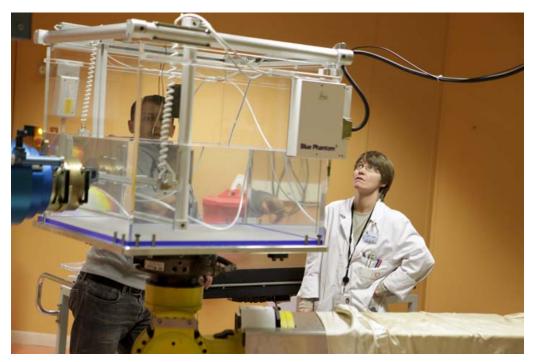
2h le lundi et jeudi matin 4h le samedi si nécessaire


Maintenance trimestrielle: 3 jours/ trimestre

Maintenance annuelle: 1 semaine si besoin

Bilan 5 ans après l'installation du cyclotron: **Up-time fin 2015 : 97.8%**

(2.2% de patients reprogrammés)

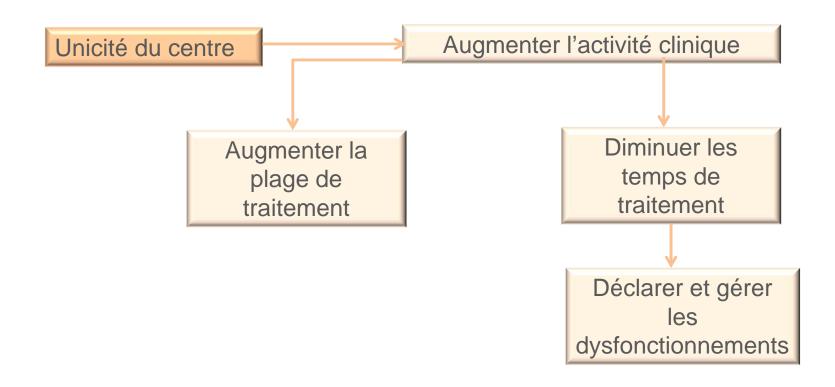


IBA CPO PLAN ACT ACT DO **LOGBOOK** Priorités + Priorités + liste persistante liste persistante

Réunion hebdomadaire IBA-CPO pour le suivi et la priorisation des actions

Contrôles qualité

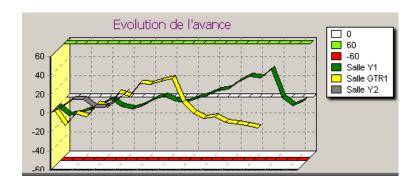
- Tests périodiques réglementaires
- Contrôle quotidien du faisceau (centrage, énergie, dose) dans une condition de référence
- Contrôle de tous les accessoires (mécanique/ manipulateurs/physiciens)
- Contrôle des champs d'irradiation sous faisceau (parcours/ modulation/dose)

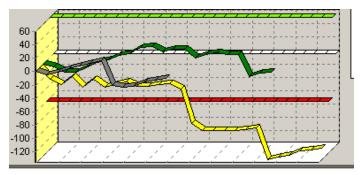

Contrôles qualité/ Suivi et enregistrement des étapes de validation

DEMARCHE QUALITE DU SITE

Activité clinique prévisionnelle

ANNEE	2011	2012	2013	2014	2015	2016
OBJECTIF (Nb de séances/an)	4800	6000	7000	8000	9000	10000
REEL (Nb de séances/an)	4750	6389	7253	8757	9515	
NOMBRE DE PATIENTS TRAITES	418	457	498	554	559	


Planning quotidien prévisionnel/ Plusieurs activités dans une salle



Activités planifiées:

- Contrôle de qualité de référence
- Tests périodiques
- Changement d'accessoires (chaise/table/snout...)
- Simulations/ Traitements/ Essais de faisabilité/ Enfants sous AG
- Contrôle de qualité des patients
- Développement
- Expérimentations

Planning quotidien réel

- Mise en place d'une démarche LEAN/ Cartographie des processus
- Déclaration des Problèmes Oublis Pannes (POP)
- Résolution quasi immédiate de 85% des dysfonctionnements (Ventilation vers agents concernés)
- Retour vers les équipes et implication dans la résolution des POP
- Pour les 15% restants : mise en place de plans d'actions
- Suivi des plans d'actions/ Retour vers les équipes

En gantry: 45 min/champ en 2010 17,2 min en 2012 14,7 min/ champ aujourd'hui

Ajustement du planning quotidien

- Ajustement des temps de traitement en fonction des statistiques
- Remontée d'informations des manipulateurs vers le cadre de santé (état du patient/ Difficultés de MEP...)
- Les retards incontrôlables:
- Stress du patient
- **Pannes**
- Impondérables...

RADIOPROTECTION

Radioprotection/ Risques

Pendant l'envoi faisceau : neutrons

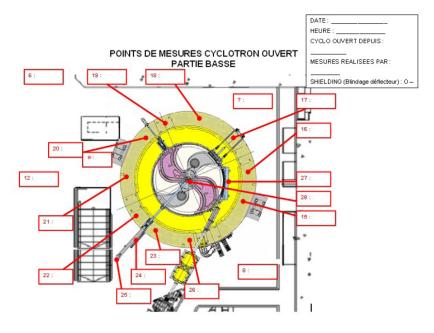
En salle:

- Electronique de salle
- Dose additionnelle patient

Hors salle: calcul des blindages (MCNPX + contrôles ambiance)

Hors envoi faisceau (Dose extrémités)

- Activation (Ligne, collimateurs...)/ Manipulateurs/Dose aux extrémités
- Cyclotron (Opérations de maintenance)/Techniciens et ingénieurs


Hors envoi faisceau (Risque d'exposition radiologique)

- Réalisation de RX pour le positionnement/manipulateur
- Paravent plombé sécurités porte

Radioprotection

- Formation/ Phase de préparation des ouvertures cyclotrons avec les équipes
- Cartographie/ Etude de postes
- Mesures prévisionnelles (Opération de maintenance)
- Suivi des opérations

Radioprotection/ Estimation du rayonnement secondaire au niveau du patient (Thèse en collaboration avec l'IRSN)

- Détecteurs
- Fantôme anthropomorphique
- Fantôme mathématique

Les contraintes globales de la protonthérapie

Cout des installations

- Cyclotron+ lignes + bras isocentrique: 28 M€
- 1 accélérateur linéaire moderne : 2,5 à 5 M€

Limitation du nombre d'indications traitées

- Place des protons par rapport aux dernières technologies en photons (stéréotaxie, arcthérapie...)
- Essais cliniques en cours

Autre:

- Imagerie en salle de traitement : les nouvelles salles photons sont actuellement mieux équipées que les salles de protonthérapie
- Taille des installations

Bras isocentrique 10m, 120t

Les contraintes liées ou impactant sur l'activité clinique

- Le lissage du recrutement patient
- La gestion des urgences
- Le décalages des patients:
 - Protocole de chimiothérapie
 - Etat clinique
 - Chirurgie
 - Evolution du volume tumoral
- La gestion des pannes

Les perspectives

- Augmenter l'activité clinique
- Diversifier les localisations
- Exploiter toutes les options du gantry
- Intensifier la R&D dédiée au développements cliniques
- Installer une ligne expérimentale
- Installer un LINAC

Merci pour votre attention

